Domain hypotenuse.de kaufen?

Produkte und Fragen zum Begriff Hypotenuse:


  • Wonday Geometriedreieck, Hypotenuse: 240 mm
    Wonday Geometriedreieck, Hypotenuse: 240 mm

    aus Kunststoff, mit abnehmbarem Griff, 4 Funktionen: Winkel in Millimetereinteilung, symmetrische Striche, parallele Striche und Winkelmesser, in Blisterverpackung (FTT700362)Wichtige Daten:Ausführung: mit GriffLänge: Hypotenuse: 240 mmMaterial: KunststoffFarbe: transparentVerpackung Breite in mm: 245Verpackung Höhe in mm: 15Verpackung Tiefe in mm: 245Versandgewicht in Gramm: 42Geometriedreieck, mit abnehmbarem Griff&#8226, 4 Funktionen: Winkel mit Millimetereinteilung, symmetrische Striche, parallele Linien und Winkelmesser &#8226, in Blisterverpackung

    Preis: 1.67 € | Versand*: 5.95 €
  • Längen messen und berechnen (PR) (Lorenz, Julia)
    Längen messen und berechnen (PR) (Lorenz, Julia)

    Längen messen und berechnen (PR) , In unserer Lernwerkstatt zum Thema ¿Längen¿ werden die Schüler behutsam an die zunächst komplex erscheinende Thematik eingeführt. Als Einstieg entwickeln sie eigene Größenvorstellungen von Längen, später zeichnen und messen sie mit richtigen Instrumenten. Um möglichst handlungsorientiert zu arbeiten, messen sich die Kinder gegenseitig aus, wenden Körpermaße wie Schrittlänge und Spanne an und basteln ein Maßband, das sich auch später noch praktisch einsetzen lässt. Sie lernen gängige Messinstrumente wie Lineal oder Zollstock kennen und spielen ein passendes Zuordnungsspiel. Außerdem werden Längeneinheiten wie mm, cm, dm, m und km bunt gemischt umgewandelt. In Sach- und Rechenaufgaben üben die Schüler abschließend das Rechnen mit den verschiedenen Maßen. So wird jeder zum Längen-Experten! , > , Ausgabe: Kopiervorlagen, Schnellhefter, Erscheinungsjahr: 20170915, Produktform: Pergament, Autoren: Lorenz, Julia, Auflage/Ausgabe: Kopiervorlagen, Schnellhefter, Seitenzahl/Blattzahl: 63, Keyword: 3. und 4. Klasse; Grundschule; Größen; Mathematik, Fachschema: Mathematik / Lehrermaterial, Bildungsmedien Fächer: Mathematik, Algebra, Geometrie, Fachkategorie: Unterricht und Didaktik: Mathematik, Bildungszweck: für den Primarbereich, Altersempfehlung / Lesealter: 23, Genaues Alter: GRS, Warengruppe: HC/Schulbücher/Unterrichtsmat./Lehrer, Fachkategorie: Unterrichtsmaterialien, Thema: Verstehen, Text Sprache: ger, Verlag: Lernbiene Verlag i.d. AAP, Verlag: Lernbiene Verlag, Breite: 215, Höhe: 16, Gewicht: 440, Produktform: Ordner, Genre: Schule und Lernen, Genre: Schule und Lernen, Herkunftsland: DEUTSCHLAND (DE), Katalog: deutschsprachige Titel, Katalog: Gesamtkatalog, Katalog: Lagerartikel, Book on Demand, ausgew. Medienartikel, Relevanz: 0004, Tendenz: 0, Schulform: Grundschule, Unterkatalog: AK, Unterkatalog: Bücher, Unterkatalog: Hardcover, Unterkatalog: Lagerartikel, Unterkatalog: Schulbuch, WolkenId: 2906930

    Preis: 19.90 € | Versand*: 0 €
  • WEDO Geometriedreieck Standard, Hypotenuse 160 mm
    WEDO Geometriedreieck Standard, Hypotenuse 160 mm

    transparent, aus Kunststoff, mit Facetten, Maßskala gelb hinterlegt (52.5)Wichtige Daten:Ausführung: ohne GriffLänge: Hypotenuse: 160 mmMaterial: KunststoffFarbe: transparentVerpackung Breite in mm: 105Verpackung Höhe in mm: 30Verpackung Tiefe in mm: 230Versandgewicht in Gramm: 210Geometriedreieck Standard&#8226, mit Facetten &#8226, Maßskala gelb hinterlegt &#8226, in Kunststoffetui mit Eurolochung

    Preis: 1.26 € | Versand*: 5.95 €
  • WESTCOTT Geometriedreieck, Hypotenuse: 140 mm, transparent
    WESTCOTT Geometriedreieck, Hypotenuse: 140 mm, transparent

    aus Kunststoff, schwarz geprägte mm-Einteilung, gegenläufige Bezifferung gelb hinterlegt, mit Tuschnoppen, im Polybeutel (E-10130 BP)Wichtige Daten:Ausführung: ohne GriffLänge: Hypotenuse: 140 mmMaterial: KunststoffFarbe: transparentVerpackung Breite in mm: 85Verpackung Höhe in mm: 2Verpackung Tiefe in mm: 175Versandgewicht in Gramm: 11Geometriedreieck&#8226, aus Kunststoff&#8226, schwarz geprägte mm-Einteilung&#8226, mit gegenläufiger Bezifferung, gelb hinterlegt&#8226, mit TuschnoppenFür wen geeignet:- Schüler, Lehrer, Kinder, Jugendliche- Büromitarbeiter, technische Zeichner

    Preis: 1.06 € | Versand*: 5.95 €
  • Maped Geometriedreieck Technic, Hypotenuse: 160 mm
    Maped Geometriedreieck Technic, Hypotenuse: 160 mm

    4 in 1: Winkel mit Millimeterteilung, Parallele Striche, symmetrische Striche, Winkelmesser, aus Kunststoff, transparent, in Blisterverpackung (M277737)Wichtige Daten:Ausführung: ohne GriffLänge: Hypotenuse: 160 mmMaterial: KunststoffFarbe: transparentVerpackung Breite in mm: 215Verpackung Höhe in mm: 10Verpackung Tiefe in mm: 105Versandgewicht in Gramm: 25Geometriedreieck Technic&#8226, 4 Funktionen: Winkel mit Milimetereinteilung, symmetrische Striche, parallele Linien und Winkelmesser &#8226, in Blistverpackung

    Preis: 1.69 € | Versand*: 5.95 €
  • Maped Geometriedreieck Technic, Hypotenuse: 260 mm
    Maped Geometriedreieck Technic, Hypotenuse: 260 mm

    aus Kunststoff, mit abnehmbarem Griff, 4 Funktionen: Winkel in Millimetereinteilung, symmetrische Striche, parallele Striche und Winkelmesser, in Blisterverpackung (M028700)Wichtige Daten:Ausführung: mit GriffLänge: Hypotenuse: 260 mmMaterial: KunststoffFarbe: transparentVerpackung Breite in mm: 240Verpackung Höhe in mm: 230Verpackung Tiefe in mm: 40Versandgewicht in Gramm: 600Geometriedreieck Technic, mit abnehmbarem Griff&#8226, 4 Funktionen: Winkel mit Millimetereinteilung, symmetrische Striche, parallele Linien und Winkelmesser &#8226, in Blisterverpackung

    Preis: 2.45 € | Versand*: 5.95 €
  • WESTCOTT Geometriedreieck, Hypotenuse: 140 mm, flexibel
    WESTCOTT Geometriedreieck, Hypotenuse: 140 mm, flexibel

    transparent, flexibel und bruchsicher, aus Kunststoff, schwarz geprägte mm-Einteilung, gegenläufige Bezifferung gelb hinterlegt, mit Tuschenoppen, Farbe: transparent, im Polybeutel (E-10132 BP)Wichtige Daten:Ausführung: ohne GriffLänge: Hypotenuse: 140 mmMaterial: KunststoffFarbe: transparentVerpackung Breite in mm: 85Verpackung Höhe in mm: 2Verpackung Tiefe in mm: 170Versandgewicht in Gramm: 14Geometriedreieck, flexibel&#8226, aus Kunststoff, besonders flexibel und bruchsicher&#8226, schwarz geprägte mm-Einteilung&#8226, mit gegenläufiger Bezifferung, gelb hinterlegt&#8226, mit TuschnoppenFür wen geeignet:- Schüler, Lehrer, Kinder, Jugendliche- Büromitarbeiter, technische Zeichner

    Preis: 1.17 € | Versand*: 5.95 €
  • WEDO Geometriedreieck, flexibel, Hypotenuse 160 mm
    WEDO Geometriedreieck, flexibel, Hypotenuse 160 mm

    transparent, aus flexiblem, bruchsichern Kunststoff, mit Facetten, Maßskala gelb hinterlegt (52 553)Wichtige Daten:Ausführung: ohne GriffLänge: Hypotenuse: 160 mmMaterial: KunststoffFarbe: transparentVerpackung Breite in mm: 230Verpackung Höhe in mm: 105Verpackung Tiefe in mm: 30Versandgewicht in Gramm: 200Geometriedreieck, flexibel&#8226, aus flexiblem, bruchsicherem Kunststoff&#8226, mit Facetten &#8226, Maßskala farblich hinterlegt &#8226, in Kunststoff SB-fähig mit Eurolochung verpackt

    Preis: 1.39 € | Versand*: 5.95 €
  • rotring Geometriedreieck Centro mit Griff, Hypotenuse: 230mm
    rotring Geometriedreieck Centro mit Griff, Hypotenuse: 230mm

    glasklar, gegenläufige Bezifferung rot hinterlegt (S0903950/alt: S0220800)Wichtige Daten:Ausführung: mit GriffLänge: Hypotenuse: 230 mmMaterial: KunststoffFarbe: glasklarVerpackung Breite in mm: 130Verpackung Höhe in mm: 10Verpackung Tiefe in mm: 240Versandgewicht in Gramm: 52Geometriedreieck Centro, mit Griff&#8226, gegenläufige Bezifferung farbig hinterlegt &#8226, Tuschenoppen und Facette &#8226, mit 1-mm-Skalierung

    Preis: 4.39 € | Versand*: 5.95 €
  • MINERVA Zeichendreieck, Hypotenuse: 707 mm, 45 Grad
    MINERVA Zeichendreieck, Hypotenuse: 707 mm, 45 Grad

    aus Kunststoff, Kathetenlänge: 500 mm (50451)Wichtige Daten:Ausführung: 45 GradLänge: Kathete: 500 mmMaterial: KunststoffFarbe: transparent glasklarVerpackung Breite in mm: 705Verpackung Höhe in mm: 355Verpackung Tiefe in mm: 3Versandgewicht in Gramm: 100Zeichen-Dreieck 45°&#8226, aus Kunststoff&#8226, glasklar

    Preis: 18.61 € | Versand*: 5.95 €
  • MINERVA Zeichendreieck, Hypotenuse: 577 mm, 60 Grad
    MINERVA Zeichendreieck, Hypotenuse: 577 mm, 60 Grad

    aus Kunststoff, Kathetenlänge: 500 mm (50601)Wichtige Daten:Ausführung: 60 GradLänge: Kathete: 500 mmMaterial: KunststoffFarbe: transparent glasklarVerpackung Breite in mm: 540Verpackung Höhe in mm: 280Verpackung Tiefe in mm: 10Versandgewicht in Gramm: 100Zeichendreieck 60°&#8226, aus Kunststoff&#8226, glasklar

    Preis: 15.20 € | Versand*: 5.95 €
  • WEDO Geometriedreieck, Hypotenuse 250 mm, abnehmbarer Griff
    WEDO Geometriedreieck, Hypotenuse 250 mm, abnehmbarer Griff

    aus Kunststoff, transparent, mit Facetten, Maßskala gelb hinterlegt (52 7)Wichtige Daten:Ausführung: mit GriffLänge: Hypotenuse: 250 mmMaterial: KunststoffFarbe: transparentVerpackung Breite in mm: 280Verpackung Höhe in mm: 145Verpackung Tiefe in mm: 35Versandgewicht in Gramm: 500Geometriedreieck, mit abnehmbaren Griffen&#8226, mit Facetten &#8226, Maßskala gelb hinterlegt &#8226, in Kunststoffetui mit Eurolochung

    Preis: 1.87 € | Versand*: 5.95 €

Ähnliche Suchbegriffe für Hypotenuse:


  • Wie kann man die hypotenuse berechnen?

    Die Hypotenuse eines rechtwinkligen Dreiecks kann mithilfe des Satzes des Pythagoras berechnet werden. Dieser besagt, dass die Quadratzahl der Hypotenuse gleich der Summe der Quadratzahlen der beiden Katheten ist. Um die Hypotenuse zu berechnen, muss man also die Längen der beiden Katheten kennen und diese Werte in die Formel einsetzen. Anschließend nimmt man die Quadratwurzel des Ergebnisses, um die Länge der Hypotenuse zu erhalten. Dieser Prozess ermöglicht es, die Länge der Hypotenuse eines rechtwinkligen Dreiecks zu bestimmen, ohne sie direkt messen zu müssen.

  • Kann man die Katheten nur durch die Hypotenuse berechnen?

    Nein, man kann die Länge der Katheten eines rechtwinkligen Dreiecks auch unabhängig von der Hypotenuse berechnen. Es gibt verschiedene Methoden, um die Länge der Katheten zu bestimmen, wie zum Beispiel den Satz des Pythagoras oder trigonometrische Funktionen wie Sinus, Kosinus und Tangens.

  • Wie kann man die Gegenkathete aus Winkel und Hypotenuse berechnen?

    Die Gegenkathete kann mit Hilfe des Sinus berechnet werden. Die Formel lautet: Gegenkathete = Hypotenuse * Sinus(Winkel).

  • Ist es möglich, aus der Hypotenuse beide Katheten zu berechnen?

    Ja, es ist möglich, die Länge der beiden Katheten eines rechtwinkligen Dreiecks zu berechnen, wenn die Länge der Hypotenuse bekannt ist. Dies kann mit Hilfe des Satzes des Pythagoras erfolgen, der besagt, dass die Quadratsumme der Längen der beiden Katheten gleich der Quadratsumme der Länge der Hypotenuse ist.

  • Wie kann ich die Länge der beiden Katheten eines gleichschenkligen Dreiecks berechnen, wenn nur die Höhe und die Hypotenuse gegeben sind? Die Hypotenuse beträgt 24 cm und die Höhe beträgt 12 cm.

    Da es sich um ein gleichschenkliges Dreieck handelt, sind die beiden Katheten gleich lang. Um die Länge der Katheten zu berechnen, kann der Satz des Pythagoras verwendet werden. Da die Höhe und die Hypotenuse gegeben sind, kann der Satz des Pythagoras wie folgt angewendet werden: a^2 + h^2 = c^2, wobei a die Länge der Katheten, h die Höhe und c die Hypotenuse ist. In diesem Fall ergibt sich: a^2 + 12^2 = 24^2. Durch Umstellen der Gleichung kann die Länge der Katheten berechnet werden.

  • Wo befindet sich die Hypotenuse?

    Die Hypotenuse befindet sich in einem rechtwinkligen Dreieck. Sie ist die längste Seite des Dreiecks und liegt gegenüber dem rechten Winkel. Die Hypotenuse verbindet die beiden Katheten miteinander. Sie kann mit dem Satz des Pythagoras berechnet werden, der besagt, dass die Quadratzahl der Hypotenuse gleich der Summe der Quadrate der beiden Katheten ist. In der Geometrie spielt die Hypotenuse eine wichtige Rolle bei der Berechnung von Abständen und Winkeln in rechtwinkligen Dreiecken.

  • Wie erkenne ich die hypotenuse?

    Die Hypotenuse ist die längste Seite in einem rechtwinkligen Dreieck und liegt gegenüber dem rechten Winkel. Um die Hypotenuse zu erkennen, kannst du die Seitenlängen des Dreiecks überprüfen und die längste Seite identifizieren. Alternativ kannst du den Satz des Pythagoras anwenden, der besagt, dass die Hypotenuse die Seite ist, die dem Quadrat der Summe der Katheten entspricht. Eine weitere Möglichkeit ist, den rechten Winkel im Dreieck zu lokalisieren und die Seite gegenüber diesem Winkel als Hypotenuse zu identifizieren. Es ist wichtig, die Hypotenuse zu erkennen, da sie eine zentrale Rolle in der Berechnung von rechtwinkligen Dreiecken spielt.

  • Was sind Katheten und Hypotenuse?

    Katheten sind die beiden Seiten eines rechtwinkligen Dreiecks, die den rechten Winkel einschließen. Die Hypotenuse ist die Seite, die dem rechten Winkel gegenüberliegt und die längste Seite des Dreiecks ist.

  • Ist die Hypotenuse immer c?

    Nein, die Hypotenuse wird in der Regel mit dem Buchstaben "c" bezeichnet, aber es ist nicht immer der Fall. In der allgemeinen Formel des Satzes des Pythagoras (a^2 + b^2 = c^2) repräsentiert "c" die Länge der Hypotenuse, aber in spezifischen Problemen oder Kontexten kann auch ein anderer Buchstabe verwendet werden, um die Hypotenuse zu bezeichnen.

  • Wie berechnet man die Hypotenuse 2?

    Um die Hypotenuse eines rechtwinkligen Dreiecks zu berechnen, kann der Satz des Pythagoras verwendet werden. Dieser besagt, dass die Quadratzahl der Hypotenuse gleich der Summe der Quadratzahlen der beiden Katheten ist. Um die Hypotenuse 2 zu berechnen, müssen also die Quadratzahlen der beiden Katheten addiert und anschließend die Wurzel gezogen werden.

  • Wie kann man die Hypotenuse herausfinden?

    Die Hypotenuse eines rechtwinkligen Dreiecks kann mithilfe des Satzes des Pythagoras berechnet werden. Dieser besagt, dass die Quadratzahl der Hypotenuse gleich der Summe der Quadratzahlen der beiden Katheten ist. Um die Hypotenuse zu finden, muss man also die Wurzel aus dieser Summe ziehen.

  • Wie berechnet man hypotenuse und katheten?

    Um die Hypotenuse eines rechtwinkligen Dreiecks zu berechnen, kann man den Satz des Pythagoras verwenden. Dieser besagt, dass die Quadratzahl der Hypotenuse gleich der Summe der Quadratzahlen der beiden Katheten ist. Um die Länge einer Kathete zu berechnen, kann man entweder den Satz des Pythagoras verwenden, wenn die Längen der anderen Seite und der Hypotenuse bekannt sind, oder den Tangens, wenn der Winkel zwischen der Kathete und der Hypotenuse bekannt ist. Es ist wichtig, die richtigen Seiten und Winkel zu identifizieren, um die korrekten Berechnungen durchzuführen.