Domain hypotenuse.de kaufen?

Produkt zum Begriff Katheten:


  • ARISTO Geometrie-Dreieck TZ-DREIECK 80,0 cm
    ARISTO Geometrie-Dreieck TZ-DREIECK 80,0 cm

    Perfekt für den Unterricht an der Tafel: das große Geometrie-Dreieck TZ-DREIECK Das ARISTO Wandtafel-Zeichengerät TZ-DREIECK misst auch in großen Dimensionen sehr präzise. Maßstab, Winkelmesser, Symmetrie-Maßstab und Parallel-Lineal - und das alles vereint dieses Zeichengerät in sich. Zum Verwechseln ähnlich Das transparente Geometrie-Dreieck sieht aus wie das ARISTO TZ-Dreieck der Schüler, nur in Groß. Dadurch ist ein vorteilhaftes Lehren garantiert ist. Gekennzeichnet ist es durch das 10 mm Gitternetz, Millimeter-Teilungen senkrecht zur Hypotenuse, markierte Winkel in 7° und 42° für perspektivisches Zeichnen, 75° für Schrägbeschriftung und 45° Linien für leichteres Schraffieren. Liegt sehr gut in der Hand Grundkörper und Haltegriff sind aus hochwertigem, transparent Plexiglas gefertigt, weshalb die Handhabung extrem einfach und stabil ist. Die transparenten Gumminoppen sorgen dafür, dass das ARISTO TZ-DREIECK beim Zeichnen nicht verrutscht. Die im Siebdruck aufgebrachte gelbe Teilung bietet einen bestmöglichen Kontrast zur dunklen Tafeloberfläche und sorgt so für eine gute Lesbarkeit auch bei größerer Distanz. Bestellen Sie das ARISTO TZ-DREIECK. Es ist ideal für den Unterricht an der Tafel und erleichtert Ihnen den Schulalltag.

    Preis: 46.51 € | Versand*: 4.99 €
  • DONAU Geometrie-Dreieck 25,0 cm
    DONAU Geometrie-Dreieck 25,0 cm

    Hier geht nichts schief Mit dem Geometrie-Dreieck 25,0 cm von DONAU haben Sie den rechten Winkel immer im Blick. Zeichnen Sie kinderleicht akkurate Linien und messen Sie den Winkel auf den Grad genau. Mit dem DONAU Geometrie-Dreieck kein Problem. Es liegt gut in der Hand und erleichtert Ihnen das Zeichnen ungemein. Alles im Blick Die gegenläufigen Grad-Zahlen werden auf dem Geometrie-Dreieck mittels farblicher Hinterlegung optisch hervorgehoben. Die Skalierungen und Zahlen sind gut lesbar und sorgen für perfekte Linien und Winkel. Alles im Griff Damit das Geometrie-Dreieck nicht wegrutscht, befindet sich in der Mitte ein praktischer Griff, der Ihnen den nötigen Halt gibt. Bestellen Sie das Geometrie-Dreieck 25,0 cm von DONAU noch heute in unserem Online-Shop und überzeugen Sie sich von der einfachen Handhabung.

    Preis: 1.24 € | Versand*: 5.94 €
  • herlitz Geometrie-Dreieck 16cm Griffloch
    herlitz Geometrie-Dreieck 16cm Griffloch

    Geometriedreieck klein mit Griff Messlänge 16cm transparent

    Preis: 1.89 € | Versand*: 6.84 €
  • WESTCOTT Geometrie-Dreieck 14,0 cm
    WESTCOTT Geometrie-Dreieck 14,0 cm

    Super praktisch: das Geometrie-Dreieck mit Abheftlochung Das Geometrie-Dreieck von WESTCOTT mit integrierter Abheftlochung ist immer dabei und kann nicht verloren gehen. Es kann in jedem Ordner abgeheftet werden. Für Beruf und Studium bestens geeignet Das Geodreieck ist eine Kombination aus Lineal und Winkelmesser in Form eines rechtwinkligen, gleichschenkligen Dreiecks. Es eignet sich ideal als Hilfsmittel für den Zeichen- und Mathematikunterricht. Speziell im Bereich Geometrie benötigen Sie es zum Messen und Zeichnen von Winkeln und paralleler Geraden. Die Details machen den Unterschied Das transparent/gelbe WESTCOTT Geometrie-Dreieck misst an der längsten Seite (Hypotenuse) 14,0. Es ist farbig hinterlegt und besitzt eine gegenläufige Gradskala mit Tuschenoppen. Dies sind erhabene Punkte an der Unterseite, die verhindern, dass beim Zeichnen mit Tinte oder Tusche etwas verschmiert. Das 2,0 mm starke Dreieck ist aus Kunststoff. Bestellen Sie jetzt das Geometrie-Dreieck von WESTCOTT mit der praktischen Abheftlochung bequem in unserem Online-Shop!

    Preis: 0.98 € | Versand*: 4.99 €
  • Wie kann die Länge der Kathete in einem rechtwinkligen Dreieck berechnet werden, wenn die Länge der Hypotenuse und des anderen Katheten bekannt sind?

    Um die Länge der Kathete in einem rechtwinkligen Dreieck zu berechnen, kann der Satz des Pythagoras verwendet werden. Dieser besagt, dass die Quadratsumme der beiden Katheten gleich dem Quadrat der Hypotenuse ist. Um die Länge einer Kathete zu berechnen, kann die Formel a^2 = c^2 - b^2 verwendet werden, wobei a die gesuchte Kathetenlänge, c die Hypotenuse und b die Länge der anderen Kathete ist. Durch Umstellen der Formel nach a kann die Länge der gesuchten Kathete berechnet werden.

  • Wie berechnet man die Länge der Kathete in einem rechtwinkligen Dreieck? Welche Beziehung besteht zwischen den beiden Katheten und der Hypotenuse?

    Die Länge der Kathete in einem rechtwinkligen Dreieck kann mit dem Satz des Pythagoras berechnet werden: a^2 + b^2 = c^2, wobei a und b die Längen der Katheten und c die Länge der Hypotenuse sind. Die Beziehung zwischen den Katheten und der Hypotenuse ist, dass die Summe der Quadrate der Katheten gleich dem Quadrat der Hypotenuse ist. Dies wird als der Satz des Pythagoras bezeichnet.

  • Was sind Katheten und Hypotenuse?

    Katheten sind die beiden Seiten eines rechtwinkligen Dreiecks, die den rechten Winkel einschließen. Die Hypotenuse ist die Seite, die dem rechten Winkel gegenüberliegt und die längste Seite des Dreiecks ist.

  • Wie berechnet man hypotenuse und katheten?

    Um die Hypotenuse eines rechtwinkligen Dreiecks zu berechnen, kann man den Satz des Pythagoras verwenden. Dieser besagt, dass die Quadratzahl der Hypotenuse gleich der Summe der Quadratzahlen der beiden Katheten ist. Um die Länge einer Kathete zu berechnen, kann man entweder den Satz des Pythagoras verwenden, wenn die Längen der anderen Seite und der Hypotenuse bekannt sind, oder den Tangens, wenn der Winkel zwischen der Kathete und der Hypotenuse bekannt ist. Es ist wichtig, die richtigen Seiten und Winkel zu identifizieren, um die korrekten Berechnungen durchzuführen.

Ähnliche Suchbegriffe für Katheten:


  • ARISTO Geometrie-Dreieck 32,5 cm
    ARISTO Geometrie-Dreieck 32,5 cm

    Geometrie-Dreieck mit Griff für Schule, Studium und Büro Mit dem 32,5 langen Zeichendreieck von ARISTO zeichnen Sie schnell und exakt Grade, Winkel, Lote, Senkrechte, Parallelen, Schraffuren, rechtwinkelige oder polare Koordinaten. Das Geometrie-Dreieck vereint Maßstab, Winkelmesser, Symmetrie-Maßstab, Zeichendreieck und Parallel-Lineal in einem Gerät. Klare Strichführung Die Facette an der Millimeter-Skalierung ermöglicht Ihnen eine klare Strichzeichnung. Die Tuschenoppen an der Unterseite bilden einen kleinen Abstand zum Untergrund. Dies verhindert ein Verwischen der Linien und erleichtert Ihnen außerdem die Linealführung. Am Haltegriff führen Sie mühelos und schnell das ARISTO Geometrie-Dreieck. Das glasklare, maßbeständige Plexiglas® gibt dabei den Blick auf Ihre Unterlagen frei. Orientieren sie sich leicht an den farbig hinterlegten Winkelgeraden und der abriebfesten Tiefenprägung. Setzen Sie auf Spitzenqualität und bestellen Sie das maßbeständige ARISTO Geometrie-Dreieck gleich hier in unserem Online Shop.

    Preis: 10.27 € | Versand*: 4.99 €
  • BRUNNEN Geometrie-Dreieck 16,0 cm
    BRUNNEN Geometrie-Dreieck 16,0 cm

    Mit vielen Funktionen – das Geometrie-Dreieck von BRUNNEN Das Geometrie-Dreieck verfügt über einen Messstab, ein Parallel-Lineal, einen Winkelmesser und einen Vieleckzeichner. Dank der farblich hinterlegten Gradskala können Sie die Winkel auf dem Geometrie-Dreieck immer exakt abmessen. Das 16,0 x 8,0 cm (BxH) kleine Zeichenwerkzeug besteht aus stabilem, transparentem Kunststoff und wird Ihnen lange treue Dienste leisten. Für Beruf und Studium bestens geeignet Das Geometrie-Dreieck von BRUNNEN eignet sich ideal als Hilfsmittel für den Zeichen- und Mathematikunterricht, Studiengänge wie Architektur oder das Ingenieurwesen. Speziell im Bereich Geometrie benötigen Sie es zum Messen und Zeichnen von Winkeln und paralleler Geraden. Greifen Sie jetzt zu und bestellen Sie das Geometrie-Dreieck von BRUNNEN bequem in unserem Online-Shop.

    Preis: 0.93 € | Versand*: 4.99 €
  • ARISTO Geometrie-Dreieck TZ-DREIECK 80,0 cm
    ARISTO Geometrie-Dreieck TZ-DREIECK 80,0 cm

    Perfekt für den Unterricht an der Tafel: das große Geometrie-Dreieck TZ-DREIECK Das ARISTO Wandtafel-Zeichengerät TZ-DREIECK misst auch in großen Dimensionen sehr präzise. Maßstab, Winkelmesser, Symmetrie-Maßstab und Parallel-Lineal - und das alles vereint dieses Zeichengerät in sich. Zum Verwechseln ähnlich Das transparente Geometrie-Dreieck sieht aus wie das ARISTO TZ-Dreieck der Schüler, nur in Groß. Dadurch ist ein vorteilhaftes Lehren garantiert ist. Gekennzeichnet ist es durch das 10 mm Gitternetz, Millimeter-Teilungen senkrecht zur Hypotenuse, markierte Winkel in 7° und 42° für perspektivisches Zeichnen, 75° für Schrägbeschriftung und 45° Linien für leichteres Schraffieren. Liegt sehr gut in der Hand Grundkörper und Haltegriff sind aus hochwertigem, transparent Plexiglas gefertigt, weshalb die Handhabung extrem einfach und stabil ist. Die transparenten Gumminoppen sorgen dafür, dass das ARISTO TZ-DREIECK beim Zeichnen nicht verrutscht. Die im Siebdruck aufgebrachte gelbe Teilung bietet einen bestmöglichen Kontrast zur dunklen Tafeloberfläche und sorgt so für eine gute Lesbarkeit auch bei größerer Distanz. Bestellen Sie das ARISTO TZ-DREIECK. Es ist ideal für den Unterricht an der Tafel und erleichtert Ihnen den Schulalltag.

    Preis: 46.54 € | Versand*: 5.94 €
  • ARISTO Geometrie-Dreieck TZ-DREIECK 80,0 cm
    ARISTO Geometrie-Dreieck TZ-DREIECK 80,0 cm

    Perfekt für den Unterricht an der Tafel: das große Geometrie-Dreieck TZ-DREIECK Das ARISTO Wandtafel-Zeichengerät TZ-DREIECK misst auch in großen Dimensionen sehr präzise. Maßstab, Winkelmesser, Symmetrie-Maßstab und Parallel-Lineal - und das alles vereint dieses Zeichengerät in sich. Zum Verwechseln ähnlich Das transparente Geometrie-Dreieck sieht aus wie das ARISTO TZ-Dreieck der Schüler, nur in Groß. Dadurch ist ein vorteilhaftes Lehren garantiert ist. Gekennzeichnet ist es durch das 10 mm Gitternetz, Millimeter-Teilungen senkrecht zur Hypotenuse, markierte Winkel in 7° und 42° für perspektivisches Zeichnen, 75° für Schrägbeschriftung und 45° Linien für leichteres Schraffieren. Liegt sehr gut in der Hand Grundkörper und Haltegriff sind aus hochwertigem, transparent Plexiglas gefertigt, weshalb die Handhabung extrem einfach und stabil ist. Die transparenten Gumminoppen sorgen dafür, dass das ARISTO TZ-DREIECK beim Zeichnen nicht verrutscht. Die im Siebdruck aufgebrachte gelbe Teilung bietet einen bestmöglichen Kontrast zur dunklen Tafeloberfläche und sorgt so für eine gute Lesbarkeit auch bei größerer Distanz. Bestellen Sie das ARISTO TZ-DREIECK. Es ist ideal für den Unterricht an der Tafel und erleichtert Ihnen den Schulalltag.

    Preis: 46.53 € | Versand*: 5.94 €
  • Wie ist das Verhältnis der Katheten zur Hypotenuse bei einem rechtwinkligen gleichschenkligen Dreieck?

    Das Verhältnis der Katheten zur Hypotenuse bei einem rechtwinkligen gleichschenkligen Dreieck ist 1:√2. Das bedeutet, dass die Länge der Kathete das Verhältnis 1 zur Länge der Hypotenuse hat.

  • Wie berechne ich die Hypotenuse, wenn ich einen Katheten und einen Winkel habe?

    Um die Hypotenuse zu berechnen, wenn du einen Katheten und einen Winkel hast, kannst du den Sinus des Winkels verwenden. Multipliziere einfach den Wert des Katheten mit dem Sinus des Winkels, um die Länge der Hypotenuse zu erhalten.

  • Was ist der Satz des Pythagoras und wie hängen Hypotenuse und Katheten damit zusammen?

    Der Satz des Pythagoras besagt, dass in einem rechtwinkligen Dreieck das Quadrat der Hypotenuse (die Seite gegenüber dem rechten Winkel) gleich der Summe der Quadrate der beiden Katheten (die beiden Seiten, die den rechten Winkel einschließen) ist. Mit anderen Worten: a² + b² = c², wobei a und b die Längen der Katheten und c die Länge der Hypotenuse sind. Der Satz des Pythagoras beschreibt also die Beziehung zwischen den Seitenlängen eines rechtwinkligen Dreiecks.

  • Was ist die Beziehung zwischen den Katheten und der Hypotenuse in einem rechtwinkligen Dreieck?

    Die Katheten sind die beiden Seiten, die den rechten Winkel eines rechtwinkligen Dreiecks bilden. Die Hypotenuse ist die längste Seite des Dreiecks und liegt gegenüber dem rechten Winkel. Die Beziehung zwischen den Katheten und der Hypotenuse wird durch den Satz des Pythagoras beschrieben: a^2 + b^2 = c^2, wobei a und b die Längen der Katheten und c die Länge der Hypotenuse sind.

* Alle Preise verstehen sich inklusive der gesetzlichen Mehrwertsteuer und ggf. zuzüglich Versandkosten. Die Angebotsinformationen basieren auf den Angaben des jeweiligen Shops und werden über automatisierte Prozesse aktualisiert. Eine Aktualisierung in Echtzeit findet nicht statt, so dass es im Einzelfall zu Abweichungen kommen kann.